The impacts of inflation on income inequality: The role of institutional quality

4th TIAC-BNM Monetary and Financial Economics Workshop
19 Nov 2019

Dr. Law Chee Hong

Introduction

• The income inequality has numerous economic and social effects.

- Among the determinants of income inequality investigated in the previous studies are:
- 1) Economic development level (Monnin, 2014).
- 2) Unemployment (Monnin, 2014).
- 3) Institutional factors (Amendola, Easaw & Savoia, 2013)
- 4) Monetary policy (interest rate or inflation rate) (Colciago et al. 2019).

Introduction

- The focus of the paper is inflation
- Previous studies such as Monnin (2014), Narob (2015), Balcilar, Chang, Gupta, and Miller (2018), Siami-Namini and Hudson (2019) has find either linear or nonlinear impacts of inflation.
- Theoretical impacts of inflation on income inequality
- 1) Increase income inequality by lower purchasing power of the poor and real value of government aids (regressive tax).
- 2) Reduce income inequality by inflating nominal income and lead to higher income tax (progressive tax)

Introduction

- The objectives of the paper are:
- 1) To study the inflation-income inequality nexus using panel data.
- 2) The role of institutional quality in that nexus.

- Rationale of the second objective:
- 1) Better institutional quality will tend to offer inclusive economic planning and promote a more equal income distribution
- 2) According to Law, Tan and Azman-Saini (2014), the poor are more protected in a well-design institutional framework.

Methodology and Data

- Uses the two-step System GMM estimator to tackle the effect persistency.
- Deploys an unbalanced panel set (4-year non-overlapping average data from 1987 to 2014) from 65 developed and developing countries.

$$LIE_{i,t} = \beta_0 + \beta_1 LIE_{i,t-1} + \beta_2 LINS_{i,t} + \beta_3 INF_CPI_{i,t} + \beta_4 LINS_{i,t} \times INF_CPI_{i,t} +$$

$$\beta_5 UNE_{i,t} + \beta_6 LOPEN_{i,t} + \beta_7 LFD_{i,t} + \eta_i + \varepsilon_{i,t}$$
(1)

Note 1: orthogonise the interaction term to avoid strong correlations between interaction term and its components.

Note 2: Outliers are identified by using the Cook's distance outlier test and excluded from the test.

Methodology and Data

Variables	Unit of Measurement	Data Source
Income inequality index (post-tax and post-transfer)	Index	Standardised World Income Inequality database
International Country Risk Guide	Index	PRS group
Unemployment rate	%	World Development Indicator databank
the ratio of the merchandise trade to GDP	(% of GDP)	World Development Indicator databank
the ratio of domestic credit to private sector by bank to GDP	(% of GDP)	World Development Indicator databank

Methodology and Data

• The overall impact of inflation and institutional quality is examined by getting the marginal effect.

$$\frac{\partial LIE}{\partial LINS} = \beta_2 + \beta_4 LINF \tag{2}$$

$$\frac{\partial LIE}{\partial INF \ CPI} = \beta_3 + \beta_4 INS_CPI \tag{3}$$

- (Source: Brambor, Clark, and Golder, 2006)
- The instruments of the system GMM are decided by imposing the conditions that the instruments for the first-differenced equation are the two and more lags of the endogenous variables. For the level equation, the instruments applied are the one lag of the first-difference of endogenous variables.

• Robustness: the growth rate of GDP deflator as indicator of inflation.

Table 1. The two-step system GMM estimation results (dependent variable: the natural dependent variable)

	Column (1)	Column (2)	Column (3)	
lagged of <i>LIE</i>	0.987***	0.989***	0.990***	_
	(0.00209)	(0.00236)	(0.00295)	
LINS	-0.0180***	-0.0157***	-0.0136***	
	(0.00333)	(0.00381)	(0.00511)	
INF_CPI	7.19e-05***		5.21e-05***	
	(1.87E-05)		(1.96E-05)	
LINS * INF_CPI	-0.000211***		-0.000169***	
	(5.25E-05)		(5.27E-05)	
INF_DEF		6.01e-05***		
		(1.79E-05)		
LINS * INF_DEF		-0.000218***		
		(5.69E-05)		
UNE	-4.57E-05	-0.0003	-0.00076	
	(0.00041)	(0.00044)	(0.00055)	
LOPEN	0.00337**	0.000882	0.000139	
	(0.00152)	(0.00171)	(0.00194)	
LFD	0.0236***	0.0230***	0.0223***	
	(0.00178)	(0.00172)	(0.00269)	
Observations	340	337	340	
Number of groups	65	65	65	
Number of instrument variables	45	45	39	
AR(2): P-value	0.212	0.205	0.218	
Hansen: P-value	0.18	0.318	0.168	
The marginal effect of in	nstitutional quality			
Maximum	-0.63167***	-0.64885***	-0.50485***	
Mean	-0.02312***	-0.02097***	-0.01772***	
Minimum	-0.01737***	-0.01504***	-0.01312***	
The marginal effect of in	nflation			
Maximum	-0.00075***	-0.00079***	-0.00061***	
Mean	-0.00066***	-0.0007***	-0.00053***	
Minimum	-0.00037***	-0.00039***	-0.0003***	

Notes: *** and ** indicate the statistical significance level of 1% and 5%, respectively. Time dummies are included in the model but are not reported here to conserve space. The value in parentheses refers to standard error.

Conclusions and Suggestions

- The coefficient signs alone suggest that inflation acts like regressive tax and good institutional contributes to lower income inequality
- In terms of marginal effects, both variables reduces the income inequality.
- Policy implications:
- 1) Develop institutional framework (lower inflation, improve quality of bureaucracy etc.) in designing policy to overcome income inequality.
- 2) While inflation seems to reduce inflation, the impact is larger when institutional quality is at the maximum.
- 3) The aggregate impact of inflation is rather small. Lower pressure on central banks to act if the policy purpose is to alleviate income inequality???

Conclusions and Suggestions

- Future researches could looks at:
- 1) Developed countries vs developing countries
- 2) Cross check the conclusions with interest rate
- 3) Non-linearity
- 4) Micro-level study (Household data).

Reference

Amendola, A., Easaw, J., & Savoia, A. (2013). Inequality in developing economies: The role of institutional development. *Public Choice*, 155, 43-60.

Azman-Saini, W. N. W., Ahmad Zubaidi, B. Law, S. H. (2010). Foreign direct investment, economic freedom and economic growth: International evidence, *Economic Modelling*, 27, 1079–1089.

Balcilar, M., Chang, S., Gupta, R., & Miller, S. M. (2018) The relationship between the inflation rate and inequality across U.S. states: A semiparametric approach. *Quality & Quantity*, *52*, 2413-2425. doi: 10.1007/s11135-017-0676-3

Brambor, T., Clark, W. R., & Golder, M. (2006). Understanding interaction models: Improving empirical analyses. *Political Analysis*, 14, 63-82. doi: 10.1093/pan_/mpi014

Colciago, A., Samarina, A., & de Haan, J. (2019). Central bank policies and income and wealth Inequality. Journal of Economic Survey, 1-33. doi: 10.1111/joes.12314

Monnin, P. (2014). Inflation and income inequality in developed economies (CEP Working Paper 2014/1). Retrieved from https://www.cepweb.org/wp-content/uploads/2014/05/CEP WP Inflation and Income Inequality.pdf

Narob, N. (2015). Income inequality and inflation in developing countries: An empirical investigation. *Economics Bulletin*, 35(4), 2888-2902.

Saimi-Namini, S., & Hudson, D. (2019). Inflation and income inequality in developed and developing countries. *Journal of Economic Studies*, 46(3), 611-632.

Thanks for your attention